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From its very origin, Introductory Chemistry: An Atoms First Approach by Julia Burdge 
and Michelle Driessen has been developed and written using an atoms first approach 
specific to introductory chemistry. It is not just a pared down version of a general chem-
istry text, but carefully crafted with the introductory-chemistry student in mind.

The ordering of topics facilitates the conceptual development of chemistry for the novice, 
rather than the historical development that has been used traditionally. Its language 
and style are student friendly and conversational; and the importance and wonder of 
chemistry in everyday life are emphasized at every opportunity. Continuing in the 
Burdge tradition, this text employs an outstanding art program, a consistent problem-
solving approach, interesting applications woven throughout the chapters, and a wide 
range of end-of-chapter problems.

Features
∙ Logical atoms first approach, building first an understanding of atomic structure, 

followed by a logical progression of atomic properties, periodic trends, and how com-
pounds arise as a consequence of atomic properties. Following that, physical and 
chemical properties of compounds and chemical reactions are covered—built upon a 
solid foundation of how all such properties and processes are the consequence of the 
nature and behavior of atoms.

∙ Engaging real-life examples and applications. Each chapter contains relevant, inter-
esting stories in Familiar Chemistry segments that illustrate the importance of chemis-
try to other fields of study, and how the current material applies to everyday life. Many 
chapters also contain brief historical profiles of some important people in chemistry 
and other fields of scientific endeavor.

Preface

278 CHAPTER 8 Gases

SAMPLE PROBLEM 8.2

Calculate the volume of a mole of ideal gas at room temperature (25°C) and 1.00 atm.

Strategy Convert the temperature in °C to temperature in kelvins, and use the ideal gas equation to solve for the unknown volume.

Setup The data given are n = 1.00 mol, T = 298 K, and P = 1.00 atm. Because the pressure is expressed in atmospheres, we 
use R = 0.0821 L · atm/K · mol to solve for volume in liters.

Solution

V =  
(1 mol)a0.0821

L · atm
K · mol

b(298 K)

1 atm
 =  24.5 L

Practice Problem A TTEMPT What is the volume of 5.12 moles of an ideal gas at 32°C and 1.00 atm?

Practice Problem B UILD At what temperature (in °C) would 1 mole of ideal gas occupy 50.0 L (P = 1.00 atm)?

Practice Problem C ONCEPTUALIZE The diagram on the left represents a sample of gas in a container with a movable 
piston. Which of the other diagrams [(i)–(iv)] best represents the sample (a) after the absolute temperature has been doubled;  
(b) after the volume has been decreased by half; and (c) after the external pressure has been doubled? (In each case, assume  
that the only variable that has changed is the one specified.)

THINK ABOUT IT
With the pressure held constant, we should expect the volume to increase with increased temperature. Room temperature 
is higher than the standard temperature for gases (0°C), so the molar volume at room temperature (25°C) should be higher 
than the molar volume at 0°C—and it is.

Using the Ideal Gas Equation to Calculate Volume

Student Note: It is a very common mistake to fail to convert to  
absolute temperature when solving a gas problem. Most often, 
temperatures are given in degrees Celsius. The ideal gas  
equation only works when the temperature used is in kelvins.  
Remember: K = °C + 273.

(i) (ii) (iii) (iv)

SAMPLE PROBLEM 8.3

Calculate the pressure of 1.44 moles of an ideal gas in a 5.00-L container at 36°C.

Strategy Rearrange the ideal gas law (Equation 8.1) to isolate pressure, P. Convert the temperature into kelvins, 36 + 273 = 309 K.

Setup

P =
nRT

V

Solution

P =
nRT

V
=

1.44 mole × 0.0821
L · atm
K · mol

× 309 K

5.00 L
= 7.31 atm

Using the Ideal Gas Equation to Calculate Pressure

bur02702_ch08_268-307.indd   278 12/18/15   5:18 AM

∙ Consistent problem-solving skill develop-
ment. Fostering a consistent approach to 
problem solving helps students learn how 
to approach, analyze, and solve problems. 
Each worked example (Sample Problem) is 
divided into logical steps: Strategy, Setup, 
Solution, and Think About It; and each is 
followed by three practice problems. Prac-
tice Problem A allows the student to solve 
a problem similar to the Sample Problem, 
using the same strategy and steps. Wherever 
possible, Practice Problem B probes under-
standing of the same concept(s) as the Sam-
ple Problem and Practice Problem A, but is 
sufficiently different that it requires a slightly 
different approach. Practice Problem C often 
uses concept art or molecular models, and 
probes comprehension of underlying con-
cepts. The consistent use of this approach 
gives students the best chance for developing 
a robust set of problem-solving skills.

xvi
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Molecular polarity is tremendously important in determining the physical and chemical properties of a substance. Indeed, 
molecular polarity is one of the most important consequences of molecular shape. To determine the shape of a molecule, 
we use a stepwise procedure:

 1. Draw a correct Lewis structure [  Sections 6.1 and 6.2].
 2. Count electron groups on the central atom. Remember that an electron group can be a lone pair or a bond, and that 

a bond may be a single bond, a double bond, or a triple bond.
 3. Apply the VSEPR model [  Section 6.4] to determine electron-group geometry.
 4. Consider the positions of the atoms to determine the molecular shape, which may or may not be the same as the 

electron-group geometry.

Consider the examples of SO2, C2H2, and CH2Cl2. We determine the molecular shape of each as follows:

2 electron groups on
each central atom:
• 1 single bond
• 1 triple bond

3 electron groups:

• 1 double bond
• 1 single bond
• 1 lone pair

Count the electron
groups on the

central atom(s) 

Draw the Lewis
structure

4 electron groups:

• 4 single bonds

With no lone pairs
on the central atom,
the molecular
shape is linear.

With 1 lone pair on
the central atom,
the molecular
shape is bent.

Consider positions
of atoms to
determine

molecular shape.

With no lone pairs
on the central atom,
the molecular
shape is tetrahedral.

2 electron groups
arrange themselves
linearly.

3 electron groups
arrange themselves
in a trigonal plane.

Apply VSEPR to
determine electron-

group geometry

4 electron groups
arrange themselves
in a tetrahedron.

O S O CH Cl

Cl

H

CH C H

CH C HS
O O C

H Cl

Cl

H

Molecular Shape and Polarity KEY SKILLS

bur02702_ch06_192-233.indd   229 12/17/15   9:24 PM
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Having determined molecular shape, we determine overall molecular polarity of each molecule by examining the individual 
bond dipoles and their arrangement:

C and H have
electronegativity
values of 2.5 and
2.1, respectively.
Therefore, the
bonds are considered
nonpolar.

S and O have
electronegativity
values of 2.5 and
3.5, respectively.
Therefore, the
bonds are polar.

Determine whether
or not the

individual bonds
are polar.

The C    H bonds
are nonpolar. C and
Cl have
electronegativity
values of 2.5 and
3.0, respectively.
Therefore, the C    Cl
bonds are polar.

CH C H C
H Cl

Cl

H

S
O O

Only in C2H2 do the dipole-moment vectors cancel each other. C2H2 is nonpolar, SO2 and CH2Cl2 are polar.

Even with polar bonds, a molecule may be nonpolar if it consists of equivalent bonds that are distributed symmetrically. 
Molecules with equivalent bonds that are not distributed symmetrically—or with bonds that are not equivalent, even if they 
are distributed symmetrically—are generally polar.

6.1
Determine the molecular shape of selenium dibromide.
a) linear
b) bent
c) trigonal planar
d) trigonal pyramidal
e) tetrahedral

6.2
Determine the molecular shape of phosphorus triiodide.
a) linear
b) bent
c) trigonal planar
d) trigonal pyramidal
e) tetrahedral

6.3
Which of the following species is polar?
a) OBr2
b) GeCl4
c) SiO2
d) BH3
e) BeF2

6.4
Which of the following species is nonpolar?
a) NCl3
b) SeCl2
c) SO2
d) CF4
e) AsBr3

Key Skills Problems

bur02702_ch06_192-233.indd   230 12/17/15   9:24 PM

∙ Outstanding pedagogy for student learning. The Checkpoints and Student Notes 
throughout each chapter are designed to foster frequent self-assessment and to provide 
timely information regarding common pitfalls, reminders of important information, 
and alternative approaches. Rewind and Fast Forward Buttons help to illustrate and 
reinforce connections between material in different chapters, and enable students to 
find pertinent review material easily, when necessary.

∙ Key Skills pages are reviews of specific skills that the authors know will be important 
to students’ understanding of later chapters. These go beyond simple reviews and actu-
ally preview the importance of the skills in later chapters. They are additional opportu-
nities for self-assessment and are meant to be revisited when the specific skills are 
required later in the book.

∙ Author-created online homework. All of the online homework problems were devel-
oped entirely by co-author Michelle Driessen to ensure seamless integration with the 
book’s content.

 PREFACE  xvii
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Additional Instructor and Student Resources
Instructor resources available through Connect include the following:

∙ A complete instructor’s solutions manual that includes solutions to all of the end-of-
chapter problems

∙ Lecture PowerPoint slides that facilitate classroom discussion of the concepts in 
the text

∙ Textbook images for repurposing in your personalized classroom materials
∙ A comprehensive bank of assignable test questions

Students can purchase a Student Solutions Manual that contains detailed solutions and 
explanations for the odd-numbered problems in the text.
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Atoms and Elements

The brilliant colors of a fireworks display result from the properties of the atoms 

they contain. These atoms give off specific colors when they are burned.
Credit: © Jung-Pang Wu/Getty Images
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In This Chapter, You Will Learn
Some of what chemistry is and how it is studied using the scientific 
method. You will learn about atomic structure and you will become 
acquainted with the periodic table, how it is organized, and some 
of the information it embodies.

Things To Review Before You Begin
•	 Basic algebra

Have you ever wondered how an automobile airbag works? Or why iron rusts when 
exposed to water and air, but gold does not? Or why cookies “rise” as they bake? Or 
what causes the brilliant colors of fireworks displays? These phenomena, and countless 
others, can be explained by an understanding of the fundamental principles of chemistry. 
Whether or not we realize it, chemistry is important in every aspect of our lives. In the 
course of this book, you will come to understand the chemical principles responsible 
for many familiar observations and experiences.

1.1  The Study of Chemistry
Chemistry is the study of matter and the changes that matter undergoes. Matter, in 
turn, is anything that has mass and occupies space. Mass is one of the ways that sci-
entists measure the amount of matter.

You may already be familiar with some of the terms used in chemistry—even if 
you have never taken a chemistry class. You have probably heard of molecules; and 
even if you don’t know exactly what a chemical formula is, you undoubtedly know that 
“H2O” is water. You may have used or at least heard the term chemical reaction; and 
you are certainly familiar with many processes that are chemical reactions.

Why Learn Chemistry?
Chances are good that you are using this book for a chemistry class you are required 
to take—even though you may not be a chemistry major. Chemistry is a required part 
of many degree programs because of its importance in a wide variety of scientific 
disciplines. It sometimes is called the “central science” because knowledge of chemis-
try supports the understanding of other scientific fields—including physics, biology, 
geology, ecology, oceanography, climatology, and medicine. Whether this is the first in 
a series of chemistry classes you will take or the only chemistry class you will ever 
take, we hope that it will help you to appreciate the beauty of chemistry—and to 
understand its importance in our daily lives.

The Scientific Method
Scientific experiments are the key to advancing our understanding of chemistry or any 
science. Although different scientists may take different approaches to experimentation, 
we all follow a set of guidelines known as the scientific method. This helps ensure the 
quality and integrity of new findings that are added to the body of knowledge within 
a given field.
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4 CHAPTER 1 Atoms and Elements

The scientific method starts with the collection of data from careful observations 
and/or experiments. Scientists study the data and try to identify patterns. When a pat-
tern is found, an attempt is made to describe it with a scientific law. In this context, 
a law is simply a concise statement of the observed pattern. Scientists may then for-
mulate a hypothesis, an attempt to explain their observations. Experiments are then 
designed to test the hypothesis. If the experiments reveal that the hypothesis is incor-
rect, the scientists must go back to the drawing board and come up with a different 
interpretation of their data, and formulate a new hypothesis. The new hypothesis will 
then be tested by experiment. When a hypothesis stands the test of extensive experi-
mentation, it may evolve into a scientific theory or model. A theory or model is a 
unifying principle that explains a body of experimental observations and the law or 
laws that are based on them. Theories are used both to explain past observations and 
to predict future observations. When a theory fails to predict correctly, it must be 
discarded or modified to become consistent with experimental observations. Thus, by 
their very nature, scientific theories must be subject to change in the face of new data 
that do not support them.

One of the most compelling examples of the scientific method is the development 
of the vaccine for smallpox, a viral disease responsible for an estimated half a billion 
deaths during the twentieth century alone. Late in the eighteenth century, English physi-
cian Edward Jenner observed that even during smallpox outbreaks in Europe, a particu-
lar group of people, milkmaids, seemed not to contract it.

Law: Milkmaids are not vulnerable to the virus that causes smallpox.

Based on his observations, Jenner proposed that perhaps milkmaids, who often 
contracted cowpox, a similar but far less deadly virus from the cows they worked with, 
had developed a natural immunity to smallpox.

Hypothesis: Exposure to the cowpox virus causes the development of immunity 
to the smallpox virus.

Jenner tested his hypothesis by injecting a healthy child with the cowpox virus—
and later with the smallpox virus. If his hypothesis were correct, the child would not 
contract smallpox—and in fact the child did not contract smallpox.

Theory: Because the child did not develop smallpox, immunity seemed to have 
resulted from exposure to cowpox.

Further experiments on many more people (mostly children and prisoners) con-
firmed that exposure to the cowpox virus imparted immunity to the smallpox virus.

The flowchart in Figure 1.1 illustrates the scientific method and how it guided 
the development of the smallpox vaccine.

Observation:
Milkmaids don't

contract smallpox.

Further
Experiment:

Many more humans
inoculated with

cowpox virus, con�rming
the model.

Hypothesis:
Having contracted
cowpox, milkmaids

have a natural immunity
to smallpox.

Experiment:
Intentionally expose

a healthy child to cowpox
and later to smallpox.

Model:
Because child did not

contract smallpox,
immunity seemed to
have resulted from
cowpox exposure.

Observations
Natural phenomena

and measured events;
if universally consistent,

 can be stated
as a law

Hypothesis
Tentative explanation

that explains observations

Experiment
Procedure to test

hypothesis; measures
one variable at a time

Model (Theory)
Set of conceptual
assumptions that

explains data from
accumulated experiments;

predicts related
phenomena

Further
Experiment

Tests predictions
based on model

Hypothesis revised if
experimental results

do not support it

Model altered if
experimental results

do not support it

Figure 1.1 Flowchart of the scientific method and its importance to Edward Jenner’s development of the smallpox vaccine.
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 SECTION 1.2  Atoms First 5

1.2  Atoms First
Even if you have never studied chemistry before, you probably know already that atoms 
are the extraordinarily small building blocks that make up all matter. Specifically, an 
atom is the smallest quantity of matter that still retains the properties of matter. Further, 
an element is a substance that cannot be broken down into simpler substances by any 
means. Common examples of elements include aluminum, which we all have in our 
kitchens in the form of foil; carbon, which exists in several different familiar forms—
including diamond and graphite (pencil “lead”); and helium, which can be used to fill 
balloons. The element aluminum consists entirely of aluminum atoms; the element 
carbon consists entirely of carbon atoms; and the element helium consists entirely of 
helium atoms. Although we can separate a sample of any element into smaller samples 
of that element, we cannot separate it into other substances.

Let’s consider the example of helium. If we were to divide the helium in a balloon 
in half, and then divide one of the halves in half, and so on, we would eventually (after a 
very large number of these hypothetical divisions) be left with a sample of helium consist-
ing of just one helium atom. This atom could not be further divided to give 
two smaller samples of helium. If this is difficult to imagine, think of a col-
lection of eight identical iPods. We could divide the collection in half three 
times before we were left with a single iPod. Although we could divide the 
last iPod in half, neither of the resulting pieces would be an iPod! (Figure 1.2)

The notion that matter consists of tiny, indivisible pieces has been 
around for a very long time, first having been proposed by the philosopher 
Democritus in the fifth century B.C. But it was first formalized early in the 
nineteenth century by John Dalton (Figure 1.3). Dalton devised a theory to 
explain some of the most important observations made by scientists in the 
eighteenth century. His theory included three statements, the first of which is:

∙ Matter is composed of tiny, indivisible particles called atoms; all 
atoms of a given element are identical; and atoms of one element 
are different from atoms of any other element.

We will revisit this statement later in this chapter and introduce the second 
and third statements to complete our understanding of Dalton’s theory in 
Chapters 3 and 10.

We know now that atoms, although very small, are not indivisible. Rather, 
they are made up of still smaller subatomic particles. The type, number, and 
arrangement of subatomic particles determine the properties of atoms, which in 
turn determine the properties of everything we see, touch, smell, and taste.

Our goal in this book will be to understand how the nature of atoms 
gives rise to the properties of everything material. To accomplish this, we 
will take a somewhat unconventional approach. Rather than beginning with 
observations on the macroscopic scale and working our way backward to 
the atomic level of matter to explain these observations, we start by examin-
ing the structure of atoms, and the nature and arrangement of the tiny 
subatomic particles that atoms contain.

Student Note: By contrast,  
consider a sample of salt water. 
We could divide it into smaller 
samples of salt water; but given 
the necessary equipment, we 
could also separate it into two 
different substances: water and 
salt. An element is different in 
that it is not made up of other 
substances. Elements are the 
simplest substances.

Figure 1.2 Repeatedly dividing this collection of iPods into smaller and smaller collections eventually leaves us with a single iPod, 
which we cannot divide further without destroying it.
Credit: © S K D/Alamy

Figure 1.3 John Dalton (1766–1844) was an 
English chemist, mathematician, and philosopher. 
In addition to his atomic theory, Dalton also for-
mulated several laws governing the behavior of 
gases, and gave the first detailed description of 
a particular type of color blindness, from which 
he suffered. This form of color blindness, where 
red and green cannot be distinguished, is 
known as Daltonism.
Credit: © Sheila Terry/Science Source
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6 CHAPTER 1 Atoms and Elements

Before we begin our study of atoms, it is important for you to understand a 
bit about the behavior of electrically charged objects. We are all at least casually 
familiar with the concept of electric charge. You may have brushed your hair in very 
low humidity and had it stand on end; and you have certainly experienced static 
shocks and seen lightning. All of these phenomena result from the interactions of 
electric charges. The following list illustrates some of the important aspects of elec-
tric charge:

∙ An object that is electrically charged may have a positive (+) charge or a 
negative (−) charge.

positive

1

    negative

2

∙ Objects with opposite charges (one negative and one positive) are attracted 
to each other. (You’ve heard the adage “opposites attract.”)

attraction

1 2

∙ Objects with like charges (either both positive or both negative) repel each other.

repulsion

1 1

    
22

repulsion

∙ Objects with larger charges interact more strongly than those with smaller 
charges.

repulsion

1 1

    stronger repulsion

1
11 1

11

∙ Charged objects interact more strongly when they are closer together.

repulsion

1 1

    stronger repulsion

1 1

∙ Opposite charges cancel each other.

positive negative
no net charge

1 11 2 2

Keeping in mind how charged objects interact will greatly facilitate your understanding 
of chemistry.

1.3  Subatomic Particles and the  
Nuclear Model of the Atom

Experiments conducted late in the nineteenth century indicated that atoms, which had 
been considered the smallest possible pieces of matter, contained even smaller particles. 
The first of these experiments were done by J. J. Thomson, an English physicist. The 
experiments revealed that a wide variety of different materials could all be made to 
emit a stream of tiny, negatively charged particles—that we now know as electrons. 
Thomson reasoned that because all atoms appeared to contain these negative particles 
but were themselves electrically neutral, they must also contain something positively 

Credit: © Lourens Smak/Alamy

Credit: © Michael ONeill/WeatherVideoHD.TV
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charged. This gave rise to a model of the atom as a sphere of positive 
charge, throughout which negatively charged electrons were uniformly dis-
tributed (Figure 1.4). This model was known as the “plum-pudding” 
model—named after a then-popular English dessert. Thomson’s plum-
pudding model, which was generally accepted for a number of years, was 
an early attempt to describe the internal structure of atoms. Although it 
was generally accepted for a number of years, this model ultimately was 
proven wrong by subsequent experiments.

Working with Thomson, New Zealand physicist Ernest Rutherford 
(one of Thomson’s own students) devised an experiment to test the plum-
pudding model of atomic structure. By that time, Rutherford had already 
established the existence of another subatomic particle known as an alpha particle, 
which is emitted by some radioactive substances. Alpha particles are positively charged, 
and are thousands of times more massive than electrons. In his most famous experiment, 
Rutherford directed a stream of alpha particles at a thin gold foil. A schematic of the 
experimental setup is shown in Figure 1.5. If Thomson’s model of the atom were cor-
rect, nearly all of the alpha particles would pass directly through the foil—although a 
small number would be deflected slightly by virtue of passing very close to electrons. 
Rutherford surrounded the gold foil target with a detector that produced a tiny flash of 
light each time an alpha particle collided with it. This allowed Rutherford to determine 
the paths taken by alpha particles. Figure 1.6 illustrates the expected experimental result.

The actual experimental result was very different from what had been expected. 
Although most of the alpha particles did pass directly through the gold foil, some were 
deflected at much larger angles than had been anticipated. Some even bounced off the 
foil back toward the source—a result that Rutherford found absolutely shocking. He 
knew that alpha particles could only be deflected at such large angles, and occasionally 
bounce back in the direction of their source, if they encountered something within the 
gold atoms that was (1) positively charged, and (2) much larger than themselves. 
Figure 1.7 illustrates the actual result of Rutherford’s experiment.

This experimental result gave rise to a new model of the internal structure of 
atoms. Rutherford proposed that atoms are mostly empty space, but that each has a 
tiny, dense core that contains all of its positive charge and nearly all of its mass. This 
core is called the atomic nucleus.

Positively  charged sphere

1
2

2

2

2
2

2

2

2
2

1

1

1
1

1
1

1

1

Figure 1.4 Thomson’s experiments indicated 
that atoms contained negatively charged particles, 
which he envisioned as uniformly distributed in a 
sphere of positive charge.

α particle emitter

Gold foil

Zinc-sul�de screen

Light �ashes produced
by α particles hitting screen

Figure 1.5 Rutherford’s experiment directed a stream of positively 
charged alpha particles at a gold foil. The nearly circular detector 
emitted a flash of light when struck by an alpha particle.

Electrons: tiny, negatively charged
particles, uniformly distributed
throughout the sphere

Path followed by alpha particles,
directed at the gold foil

Gold atom: sphere of
uniform positive charge

Figure 1.6 Rutherford’s gold foil experiment was designed to 
test Thomson’s plum-pudding model of the atom, which depicted 
the atom as negatively charged electrons uniformly distributed 
in a sphere of positive charge. If the model had been correct, 
the alpha particles would have passed directly through the foil, 
with a few being deflected slightly by interaction with electrons. 
(Remember that a positively charged object and a negatively 
charged object are attracted to each other. A positively charged 
alpha particle could be pulled slightly off course if it passed 
very close to one of the negatively charged electrons.)
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8 CHAPTER 1 Atoms and Elements

Subsequent experiments supported Rutherford’s nuclear model of the atom; and 
we now know that all atomic nuclei (the plural of nucleus) contain positively charged 
particles called protons. And with the exception of hydrogen, the lightest element, 
atomic nuclei also contain electrically neutral particles called neutrons. Together, the 
protons and neutrons in an atom account for nearly all of its mass, but only a tiny frac-
tion of its volume. The nucleus is surrounded by a “cloud” of electrons—and just as 
Rutherford proposed, atoms are mostly empty space. Figure 1.8 illustrates the nuclear 
model of the atom.

Of the three subatomic particles in our model of the atom, the electron is the 
smallest and lightest. Protons and neutrons have very similar masses, and each is nearly 

Path followed by alpha particles
directed at the gold foil

Gold nucleus: tiny, dense,
positively charged center

Figure 1.7 The actual result of Rutherford’s gold foil experiment. Positively charged alpha  
particles were directed at a gold foil. Most passed through undeflected, but a few were deflected 
at angles much greater than expected—some even bounced back toward the source. This  
indicated that as they passed through the gold atoms, they encountered something positively 
charged and significantly more massive than themselves.

Nucleus containing
protons (   ) and
neutrons (   ) 

Electrons
2

2

2

2

Figure 1.8 Nuclear model of the atom. Protons (blue) and neutrons (red) are contained within 
the nucleus, a tiny space at the center of the atom. The rest of the volume of the atom is nearly 
empty, but is occupied by the atom’s electrons. This illustration exaggerates the size of the 
nucleus relative to the size of the atom. If the picture were actually done to scale, and the 
nucleus were the size shown here (1 centimeter), the atom would be on the order of 100 meters 
across—about the length of a football field.

Student Note: An alpha particle 
is the combination of two protons 
and two neutrons.
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2000 times as heavy as an electron. Further, because protons are positively charged and 
electrons are negatively charged, combination of equal numbers of each results in com-
plete cancellation of the charges. The number of electrons is equal to the number of 
protons in a neutral atom. Because neutrons are electrically neutral, they do not con-
tribute to an atom’s overall charge.

Sample Problem 1.1 lets you practice identifying which combinations of sub-
atomic particles constitute a neutral atom.

SAMPLE PROBLEM 1.1 Identifying a Neutral Atom Using Numbers  
of Subatomic Particles

The following table contains data sets that indicate numbers of subatomic particles. Which of the sets of data represent neutral 
atoms? For those that do not represent neutral atoms, determine what the charge is—based on the numbers of subatomic particles.

 neutrons protons electrons
(a)  5 10  5
(b) 11 12 12
(c)  8  9  9
(d) 20 21 20

Strategy You have learned that the charge on a proton is +1 and the charge on an electron is −1. Neutrons have no charge. The 
overall charge is the sum of charges of the protons and electrons, and a neutral atom has no charge. Therefore, a set of data in 
which the number of protons is equal to the number of electrons represents a neutral atom.

Setup Data sets (b) and (c) each contain equal numbers of protons and electrons. Data sets (a) and (d) do not.

Solution The data in sets (b) and (c) represent neutral atoms. Those in (a) and (d) represent charges species. The charge on the 
species represented by data set (a) is +5: 10 protons (+1 each) and 5 electrons (−1 each). The charge on the species represented 
by data set (d) is +1: 21 protons (+1 each) and 20 electrons (−1 each).

Practice Problem A TTEMPT Which of the following data sets represent neutral atoms? For those that do not represent 
neutral atoms, determine the charge.

 neutrons protons electrons
(a) 31 31 30
(b) 24 22 24
(c) 12 11 11
(d) 6 5 5

Practice Problem B UILD Fill in the appropriate missing numbers in the following table:

 overall charge protons electrons
(a) +2 23
(b) −3  42
(c) 0 53
(d)  16 18

Practice Problem C ONCEPTUALIZE  
Determine which of the following pictures represents a 
neutral atom. For any that does not represent a neutral 
atom, determine the overall charge. (Protons are blue,  
neutrons are red, and electrons are green.)

THINK ABOUT IT
By summing the charges of protons and electrons, we can determine the overall charge on a species. Note that the 
number of neutrons is not a factor in determining overall charge because neutrons have no charge.

(a) (b) (c)(a) (b) (c)(a) (b) (c)
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